
Gecko Embedding Basics

Given the ever-growing importance of the Web as a source of information, entertain-
ment, and personal connectedness, the ability to access and view data stored in HTML
format is becoming more and more important for a wide variety of otherwise highly
divergent software applications. Whether it’s a matter of a simple HTML page viewer
or of a full-fledged web browser, the ability to parse and render HTML-based docu-
ments is an increasingly significant function in many, many situations. For the appli-
cation developer, the problem becomes how to implement this crucial functionality in
a way that minimizes development time yet results in an agile and robust product.
Embedding Gecko, the rendering engine at the heart of the Netscape and Mozilla
browsers, is an outstanding solution to this problem.

Why Gecko
Gecko is the smart embedding choice. It is quick, robust, and highly standards com-
pliant. In its Mozilla and Netscape incarnations, it has been widely distributed and
very well reviewed.
It is Open Source. Unlike other embedding choices, all of Gecko’s source code is
freely available and fully customizable. You can tinker and tweak as much as you
need. Yet, depending on the license chosen, it is quite possible to use Gecko as a com-
ponent in what is otherwise a fully proprietary commercial product.
And because Gecko is associated with the Mozilla project, there are many resources
available to assist the embedding effort. The Mozilla web site, mozilla.org, has an
embedding project area at mozilla.org/projects/embedding/. There is a newsgroup,
netscape.public.mozilla.embedding, focussed on exchanging information among
embedders, as well as a number of other related newsgroups. A complete cross-refer-
ence for the codebase is available at lxr.mozilla.org/seamonkey/. And filing, follow-
ing the progress of, and helping to fix any bugs is made simple through the Bugzilla
bug database, bugzilla.mozilla.org/.
Gecko is also architected from the ground up to be cross-platform. Directly from
mozilla.org, it runs on Wintel, Mac OS 9.0 and OS X, and Linux, and there are third-
party ports to a number of other platforms.
Finally, licensing Gecko is royalty-free, even if the final application is an otherwise
proprietary commercial product. Very generally, any modifications of the original
 1

http://www.mozilla.org
http://mozilla.org/projects/embedding/
http://lxr.mozilla.org/seamonkey/
http://bugzilla.mozilla.org/

Mozilla-supplied source code (but not the code in which it is embedded) must be
returned to the community, that same original code must be made available to the
application’s users (often by a link to the mozilla.org website), and the application
must indicate in some obvious way (for example, a logo on the box or on the About:
page) that the product embeds Gecko. Exact descriptions of the possible licensing
arrangements are presented at www.mozilla.org/MPL/, which is the only legally com-
plete source for licensing information.

What You Need to Embed
Once you’ve decided to embed, there are three main steps that you must take. First
you must get the code. Then you must understand some specific technologies used in
the manipulation of the Gecko codebase. Finally, you must decide which additional
functionalities you may wish to add. This section will guide you through these steps.

Getting the Code
At the moment, the best way to get the files you will need to embed Gecko is to down-
load and build the entire Mozilla source tree. This is actually a fairly simple process.
Full instructions and appropriate links are available at mozilla.org/source.html. A sec-
ond, component by component, method is under development, but is still at a beta
stage. Information on this project can be found at www.mozilla.org/projects/embed-
ding/bootstrap.html. In addition, work is also being done on developing a Gecko
Runtime Environment, or GRE, which would support multiple applications built on
Mozilla components using a single set of core libraries. This project lives at
www.mozilla.org/projects/embedding/MRE.html.(If you intend to work component
by component you must be particularly aware of issues of binary compatibility. For
help in this area, look at mozilla.org/projects/xpcom/glue/Component_Reuse.html.)
First you must acquire some tools (basically a supported compiler, a Perl distribution,
and some general purpose utilities). Then you must set up your computer environ-
ment. Next you must download the source. Assuming you are going to download the
entire tree, there are two ways to do this: you can FTP a tarball of the entire tree (this
is the simplest way, and it’s guaranteed to compile, but it may not include the most
recent additions to the code) or you can use CVS to get the absolutely most recent
code or to do incremental updates. Once you have the tree and the tools and your envi-
ronment is properly set up, all you have to do is run the appropriate provided make-
file. There are detailed instructions for each of the supported platforms.
When the build is done, navigate to the mozilla/embedding/config directory. There
you will find sample manifest files (all the names begin with "basebrowser") for
embedding on each of the different platforms. These are samples only and they may
not fit your needs completely, but they are a good place to start. There are also sample

http://www.mozilla.org/MPL/
http://mozilla.org/source.html
http://www.mozilla.org/projects/embedding/bootstrap.html
http://www.mozilla.org/projects/embedding/bootstrap.html
http://www.mozilla.org/projects/embedding/MRE.html
http://mozilla.org/projects/xpcom/glue/Component_Reuse.html

embedding projects for each platform that you can use as models. See mozilla.org/
projects/embedding/examples/index.html.

Understanding the Coding Environment
Mozilla was set up from the beginning to support design and development across mul-
tiple platforms and programming languages. To this end, a number of in-house pro-
gramming technologies were developed, all based around an ideal of object
encapsulation. Embedding Gecko necessarily implies acquiring a working knowledge
of these technologies, including XPCOM, XPIDL, XPConnect, special string classes,
and, optionally, XUL. The following provides a brief introduction to them. More
information can be found at the mozilla.org site.

XPCOM
The most important of the Mozilla technologies is XPCOM, the Cross-Platform Com-
ponent Object Model. XPCOM provides a framework which manages the creation,
ownership, and deletion of objects and other data throughout Mozilla. If you have
used MSCOM, you will recognize certain basic similarities. But there are also signifi-
cant differences - XPCOM is cross-platform and designed to run largely in a single
thread - and the two are not at this time compatible.

The interface
At the core of XPCOM is the concept of the interface. An interface is simply a
description of a set of methods, attributes, and related constants all associated with a
particular functionality: it is completely distinct from the class that implements those
things. The interface serves as a kind of contract: any object that supports a particular
interface guarantees that it will perform the services described in it. To keep the inter-
face as language neutral as possible, it is written in a special language, the Interface
Definition Language, or IDL. Interface files are often referred to as .idl files. In addi-
tion to specifying the functionality of the interface, these files also carry the inter-
face’s IID, its globally unique identifying number.
Much of the communication within Gecko takes place in terms of these abstract struc-
tures (by convention, their names follow the form nsISomething).
 3

http://mozilla.org/projects/embedding/examples/index.htm
http://mozilla.org/projects/embedding/examples/index.htm

@status FROZEN
XPCOM’s level of abstraction produces great flexibility in the system. Implementa-
tions are free to change as needed. But, to work, the interfaces themselves must
remain fixed. Throughout Mozilla’s initial design and development period, interfaces
have been somewhat fluid, but as the project has matured, more and more of the inter-
faces have been marked FROZEN. Any interface so marked is guaranteed not to
change in the future.
Most of the main interfaces key to the embedding effort are now frozen, but it’s
always a good idea to check before using any interface. An interface’s status is listed
in the .idl file’s comments. A frozen interface is marked @status FROZEN. You can
search for frozen interfaces by using the mozilla cross referencing tool at
lxr.mozilla.org/seamonkey/search?string=%40status+FROZEN. Until it is frozen, an
interface may change at any time. For more information on the freezing process, see
the embedding project page at: mozilla.org/projects/embedding/.
Once an interface has been frozen, it is added to the Gecko Embedding API Reference
at mozilla.org/projects/embedding/embedapiref/embedapi.html.

nsISupports
A single object can support more than one interface. In fact, essentially all objects
support at least two interfaces — a minimum of one that does something specifically
useful and one, nsISupports, that serves a more general purpose. In a sense, nsISup-
ports is the progenitor of all XPCOM interfaces. All interfaces inherit from it, most
directly so. It serves two main functions — runtime type discovery and object lifetime
management. It is functionally identical to IUnknown in MSCOM.
Since an object can support multiple interfaces, it is perfectly possible to have a
pointer to one interface and want to know whether that same object also supports a
different interface whose functionality you might also need. The first nsISupports
method, QueryInterface, does exactly that: it asks, in effect, I know that this object is

//this

void ProcessSample(nsISample* aSample) {
 aSample->Poke("Hello");

//not this

void ProcessSample(nsSampleImpl* aSample) {
 aSample->Poke("hello");

http://lxr.mozilla.org/seamonkey/search?string=%40status+FROZEN
http://mozilla.org/projects/embedding/
http://mozilla.org/projects/embedding/embedapiref/embedapi.html

of type A (supports interface A) but is it also of type B (supports interface B)? If it is
(or does), QueryInterface returns to the caller a pointer bound to the newly requested
interface.

Because XPCOM uses an indirect method, the Component Manager, to actually
instantiate objects, and because multiple pointers to the same object — often bound to
different interfaces — can exist, it can quickly become very difficult for callers to
keep accurate track of all of the objects to which those pointers point. Objects could
be kept around in memory longer than they need to be, causing leaks, or objects could
be deleted prematurely, causing dangling pointers. The other two methods in nsISup-
ports, AddRef and Release, are designed to deal with this issue. Every time a pointer
is given out AddRef must be called on the object, incrementing an internal counter.
Every time a pointer is released, Release must be called, decrementing that same
counter. When the counter reaches zero, there are no pointers to the object remaining
and the object can safely delete itself. Control of the object’s lifetime stays within the
object itself. See below for information on XPCOM’s "smart" pointer, nsCOMPtr, a
utility which helps automate this process.

Object creation
The instantiation of objects is also an indirect process in XPCOM. Just as interfaces
have a globally unique ID number (the IID), XPCOM classes are assigned their own
GUIDs, the CID. In addition, they are also often given a text-based ID, called a con-
tract ID. One or the other of these IDs is passed to a method on a persistent XPCOM
component, the Component Manager, which actually creates the object. When a new
library of classes (called a module in XPCOM) is first introduced into the system, it
must register itself with the Component Manager, which maintains a registry that
maps classes (with their IDs) to the libraries in which they reside.
A limited number of persistent services, supplied by singleton objects, are created and
controlled by a companion to the Component Manager, the Service Manager. The
Component Manager itself is an example of such a persistent service.

void ProcessSample(nsISample* aSample) {
 nsIExample *example;
 nsresult rv;
 rv = aSample->QueryInterface(NS_GET_IID(nsIExample),
 (void **)&example);
 if (NS_SUCCEEDED(rv)) {
 example->DoSomeOperation();
 NS_RELEASE(example); // using a macro to call Release
 }
}

 5

Summing up
Functionality in XPCOM is described by abstract interfaces, and most communication
among parts of the system takes place in terms of those interfaces. The underlying
objects that implement the interfaces, on the other hand, are created indirectly by the
Component Manager based on a cross-indexed registry that it maintains.
One functionality shared by all interfaces is the ability to query the underlying object
at runtime to see if also implements other interfaces. In theory an interface is fixed
and unchangeable, but at this stage in the Mozilla codebase, only interfaces that have
been declared FROZEN are guaranteed not to change significantly. Object lifetime
management takes place inside the object itself through an internal counter that keeps
track of the number of pointers to the object that have been added or released. The cli-
ent’s only responsibility is to increment and decrement the counter. When the internal
counter reaches zero, the object deletes itself.

nsCOMPtr
Sometimes, however, even remembering to call AddRef and Release at the right times
can be difficult. To make this process easier and more reliable, XPCOM has a built-in
"smart" pointer, nsCOMPtr. This pointer takes care of calling AddRef and Release for
you. Using nsCOMPtr whenever possible will make your code cleaner and more effi-
cient. For more information on the smart pointer, see "The Complete nsCOMPtr
User’s Manual" at www.mozilla.org/projects/xpcom/nsCOMPtr.html.
Mozilla actually provides a large number of built-in macros (by convention, written in
all caps in the code) and utilities like nsCOMPtr that can make the entire process of
coding with XPCOM easier. Many of these can be found in the following files:
nsCom.h, nsDebug.h, nsError.h, nsIServiceManager.h, and nsISupportsUtils.h
Mozilla also supplies other development tools for tracking memory usage and the
like. More information on these can be found at www.mozilla.org/performance/

For more information
More information on XPCOM in general can be found at mozillla.org/projects/
xpcom/. For an overview of creating XPCOM components, see Chapter 8 of
O’Reilly’s Creating Applications with Mozilla, an open source version of which is
available at books.mozdev.org/chapters/ch08.html. For a fuller explanation of some of
the underlying logic to COM systems, see also the early chapters of Essential COM
by Don Box. While it focusses on MSCOM in particular, the book does provide an
excellent background on some of the core rationales for using such an object model.

XPIDL
Interfaces are abstract classes written in XPIDL, the Cross Platform Interface Defini-
tion Language. Yet to be useful the functionality promised in those interfaces must be
implemented in some regular programming language. Facilitating this is the job of the

http://www.mozilla.org/projects/xpcom/nsCOMPtr.html
http://mozilla.org/projects/xpcom/
http://mozilla.org/projects/xpcom/
http://www.mozilla.org/performance/
http://books.mozdev.org/chapters/ch08.html

XPIDL compiler. Once an interface is defined in an .idl file, it can be processed by the
XPIDL compiler.
The compiler can be set to output a number of things, but generally the output is two-
fold: a C++ .h file that includes a commented out template for a full C++ implementa-
tion of the interface and an XPT file that contains type library information which
works with XPConnect to make the interface available to JavaScript. More informa-
tion on the syntax of XPIDL (a simple C-like language) and the use of the compiler
can be found at mozilla.org/scriptable/xpidl/index.html.

XPConnect and XPT files
XPConnect is an XPCOM module that allows code written in JavaScript to access and
manipulate XPCOM components written in C++ and vice versa. By means of XPCon-
nect, components on either side of an XPCOM interface do not, in general, need to
know or care about which of these languages the object on the other side is imple-
mented in.
When an interface is run through the XPIDL compiler, it produces an XPT or type
library file. Because XPconnect uses the information in this file to implement trans-
parent communication between C++ objects and JavaScript objects across XPCOM
interfaces, it is important to make sure they are generated and included with your code
even if you are developing exclusively in C++. Not only is a substantial part of the
browser, in fact, implemented in JS, it is possible that in the future someone may wish
to use JS-based code to interact with whatever components you create .
As is from Mozilla, XPConnect currently facilitates interoperability between C++ and
JS. Modules to extend it to allow access from other languages (including Python) are
under independent development. Further information can be found at mozilla.org/
scriptable/index.html.

String classes
Web browsing typically involves a large amount of string manipulation. Mozilla has
developed a hierarchy of C++ classes to facilitate such manipulation and to render it
efficient and quick. To make communication among objects simpler and more error
free, Mozilla uses interfaces, which are, in essence, abstract classes. The string hierar-
chy is also headed up by a set of abstract classes, nsAString, nsASingleFragment-
String, and nsAFlatString, and for the same reasons. (These refer to double-byte
strings. There is a parallel hierarchy topped with nsACString, etc., that refers to sin-
gle-byte strings.) nsAString guarantees only a string of characters. nsASingleFrag-
mentString guarantees that the characters will be stored in a single buffer.
nsAFlatString guarantees that the characters will be stored in a single null-terminated
buffer. While there are underlying concrete classes, in general it is best to use the most
abstract type possible in a given situation. For example, concantenation can be done
virtually, through the use of pointers, resulting in an nsAString that can be used like
 7

http://mozilla.org/scriptable/xpidl/index.html
http://mozilla.org/scriptable/index.html
http://mozilla.org/scriptable/index.html

any other string. This saves the allocating and copying that would otherwise have to
be done. For more information, see "Guide to the Mozilla string classes" at
www.mozilla.org/projects/xpcom/string-guide.html.

XUL/XBL
Use of this final Mozilla technology is optional, depending on how you decide to cre-
ate the user interface for your application. XUL is Mozilla’s highly flexible XML UI
Language. It provides a number of largely platform independent widgets from which
to construct a UI. Netscape and Mozilla both use XUL for their interfaces, but not all
embedders chose to use it. XBL or the eXtensible Binding Language allows you to
attach behaviors to XUL’s XML elements. More information on XUL can be found at
www.mozilla.org/xpfe/xulref/ and on XBL at www.mozilla.org/projects/xbl/xbl.html.
There is also a wealth of good information on XUL at XulPlanet,
www.xulplanet.com/.

Choosing Additional Functionalities
As of this writing (11/6/02), Gecko is a partially modularized rendering engine. Some
functionalities beyond basic browsing are always embedded with Gecko, and, as a
result of certain architectural decisions, always will be; some are at present always
embedded with Gecko, but may, at some point in the future, be separable; and some
are now available purely as options. The following table describes the present status
of these additional functionalities:

Functions Status Now Status in Future
FTP support Optional
HTTPS support Optional
International
character support

Optional

XUL support Required Probably optional
Network support Required Maybe optional

http://www.mozilla.org/xpfe/xulref/
http://www.mozilla.org/projects/xbl/xbl.html
http://www.mozilla.org/projects/xpcom/string-guide.html
http://www.xulplanet.com/

At this time embedding Mozilla’s editor along with the rendering engine Gecko is an
uncertain proposion. A substantial part of the API is in flux. For more information on
the status of the embeddable editor, see www.mozilla.org/editor/editor-embed-
ding.html.

What Gecko Provides
The following is a description of some of the interfaces most commonly used in
embedding Gecko. It is by no means an exhaustive list of the available interfaces. The
interfaces in this section are on classes provided by Mozilla. There is also a set of
interfaces for which Gecko expects the embedder to provide the implementation. A
sample of those are covered in the next section.

Initialization and Teardown
There are two C++ only functions which serve to initalize and terminate Gecko.
The initialization function (NS_InitEmbedding) must be called before attempting
to use Gecko. It ensures XPCOM is started, creates the component registry if nec-
essary, and starts global services. The shutdown function (NS_TermEmbedding)
terminates the Gecko embedding layer, ensuring that global services are
unloaded, files are closed and XPCOM is shut down.

nsIWebBrowser
Use of this interface during initialization allows embedders to associate a new
nsWebBrowser instance (an object representing the "client-area" of a typical
browser window) with the embedder’s chrome and to register any listeners. The
interface may also be used at runtime to obtain the content DOM window and
from that the rest of the DOM.

nsIWebBrowserSetup
This interface is used to set basic properties (like whether image loading will be
allowed) before the browser window is open.

JavaScript support Required Maybe optional
CSS support Required Always required
DOM support Required Probably always
XML support Required Probably always

Functions Status Now Status in Future
 9

http://www.mozilla.org/editor/editor-embedding.html
http://www.mozilla.org/editor/editor-embedding.html
http://mozilla.org/projects/embedding/embedapiref/embedapi2.html#1099700
http://mozilla.org/projects/embedding/embedapiref/embedapi2.html#1101115
http://mozilla.org/projects/embedding/embedapiref/embedapi4.html
http://mozilla.org/projects/embedding/embedapiref/embedapi7.html

nsIWebNavigation
The nsIWebNavigation interface is used to load URIs into the web browser
instance and provide access to session history capabilities - such as back and for-
ward. It is not, at this writing (11/6/02) frozen.

nsIWebBrowserPersist
The nsIWebBrowserPersist interface allows a URI to be saved to file. It is not, at
this writing (11/6/02) frozen.

nsIBaseWindow
The nsIBaseWindow interface describes a generic window and basic operations
(size, position, window title retrieval, etc.) that can be performed on it. It is not, at
this writing (11/6/02), frozen.

nsISHistory
The nsISHistory interface provides access to session history information and
allows that information to be purged.

nsIWebBrowserFind
The nsIWebBrowserFind interface controls the setup and execution of text
searches in the browser window.

What You Provide
The following is a description of some of the more common embedder-provided inter-
faces used in embedding Gecko. It is by no means an exhaustive list of the available
interfaces.

nsIWebBrowserChrome
The nsIWebBrowserChrome interface corresponds to the top-level, outermost
window containing an embedded Gecko web browser. You associate it with the
WebBrowser through the nsIWebBrowser interface. It provides control over win-
dow setup and whether or not the window is modal. It must be implemented.

nsIEmbeddingSiteWindow
The nsIEmbeddingSiteWindow interface provides Gecko with the means to call
up to the host to resize the window, hide or show it and set/get its title. It must be
implemented.

http://mozilla.org/projects/embedding/embedapiref/embedapi58.html
http://mozilla.org/projects/embedding/embedapiref/embedapi14.html
http://mozilla.org/projects/embedding/embedapiref/embedapi6.html
http://mozilla.org/projects/embedding/embedapiref/embedapi9.html

nsIWebProgressListener
The nsIWebProgressListener interface provides information on the progress of
loading documents. It is added to the WebBrowser through the nsIWebBrowser
interface. It must be implemented. As of this writing (11/6/02), it is not frozen.

nsISHistoryListener
The nsISHistoryListener interface is implemented by embedders who wish to
receive notifications about activities in session history. A history listener is noti-
fied when pages are added, removed and loaded from session history. It is associ-
ated with Gecko through the nsIWebBrowser interface. Implementation is
optional.

nsIContextMenuListener
The nsIContextMenuListener interface is implemented by embedders who wish
to receive notifications for context menu events, i.e. generated by a user right-
mouse clicking on a link. It should be implemented on the web browser chrome
object associated with the window for which notifications are required. When a
context menu event occurs, the browser will call this interface if present. Imple-
mentation is optional.

nsIPromptService
The nsIPromptServices interface allows the embedder to override Mozilla’s stan-
dard prompts: alerts, dialog boxes, and check boxes and so forth. The class that
implements these embedder specific prompts must be registered with the Compo-
nent Manager using the same CID and contract ID that the Mozilla standard
prompt service normally uses. Implementation is optional. As of this writing (11/
6/02), this interface is not frozen.

Common Embedding Tasks
The following is a series of code snippets (taken from MFCEmbed, the Windows
based embedding Gecko sample) which demonstrate very briefly implementation
associated with common embedding tasks.To see all the files associated with this
sample, go to lxr.mozilla.org/seamonkey/source/embedding/tests/mfcembed/. There
are also Linux- and Mac OS-based examples.
 11

http://lxr.mozilla.org/seamonkey/source/embedding/tests/mfcembed/
http://mozilla.org/projects/embedding/embedapiref/embedapi59.html
http://mozilla.org/projects/embedding/embedapiref/embedapi5.html

Gecko setup
The Gecko embedding layer must be initialized before you can use Gecko. This
ensures XPCOM is started, creates the component registry if necessary, and starts glo-
bal services. There is an equivalent shutdown procedure.
Note that the embedding layer is started up by passing it two parameters. The first
indicates where the executable is stored on the file system (nsnull indicates the work-
ing directory). The second indicates the file location object "provider" that specifies to
Gecko where to find profiles, the component registry preferences, and so on.

Creating a browser instance
The embedder-provided BrowserView object calls its method CreateBrowser.
Each browser object (a webbrowser) represents a single browser window. Notice the
utility directive do_CreateInstance and the use of macros.

nsresult rv;
rv = NS_InitEmbedding(nsnull, provider);
if(NS_FAILED(rv))
{
ASSERT(FALSE);
return FALSE;
}

//Create an instance of the Mozilla embeddable browser

HRESULT CBrowserView::CreateBrowser()
{
// Create a web shell
nsresult rv;
mWebBrowser =

do_CreateInstance(NS_WEBBROWSER_CONTRACTID, &rv);
if(NS_FAILED(rv))
return rv;

Once the nsWebBrowser object is created the application uses do_QueryInterface
to load a pointer to the msIWebNavigation interface into the mWebNav member vari-
able. This will be used later for web page navigation.

Next the embedder-provided CBrowserImpl object is created. Gecko requires that
some interfaces be implemented by the embedder so that Gecko can communicate
with the embedding application. See the What You Provide section. In the sample,
CBrowserImpl is the object that implements those required interfaces. It will be
passed into the SetContainerWindow() call below.

The mWebBrowser interface pointer is then passed to the CBrowserImpl object via its
Init method. A second pointer to the platform specific BrowserFrameGlue interface
is also passed in and saved. The BrowserFrameGlue pointer allows CBrowserImpl to
call methods to update status/progress bars, etc.

Next the embedder-supplied chrome object is associated with the webbrowser. Note
the use of an nsCOMPtr.

rv = NS_OK;
mWebNav = do_QueryInterface(mWebBrowser, &rv);
if(NS_FAILED(rv))
return rv;

mpBrowserImpl = new CBrowserImpl();
if(mpBrowserImpl == nsnull)
return NS_ERROR_OUT_OF_MEMORY;

mpBrowserImpl->Init(mpBrowserFrameGlue, mWebBrowser);
mpBrowserImpl->AddRef();

mWebBrowser->SetContainerWindow
(NS_STATIC_CAST(nsIWebBrowserChrome*,
mpBrowserImpl));

nsCOMPtr<nsIWebBrowserSetup> setup(do_QueryInterface
(mWebBrowser));

if (setup)
 setup->SetProperty

(nsIWebBrowserSetup::SETUP_IS_CHROME_WRAPPER,
PR_TRUE);
 13

The real webbrowser window is created.

Binding a window
Basic location information is passed in.

Note the m_hWnd passed into the call above to InitWindow(). (CBrowserView inher-
its the m_hWnd from CWnd). This m_hWnd will be used as the parent window by the
embeddable browser.

Adding a listener
The BrowserImpl object is added as an nsIWebProgressListener. It will now receive
progress messages. These callbacks will be used to update the status/progress bars.

rv = NS_OK;
mBaseWindow = do_QueryInterface(mWebBrowser, &rv);
if(NS_FAILED(rv))
return rv;

RECT rcLocation;
GetClientRect(&rcLocation);
if(IsRectEmpty(&rcLocation))
{

rcLocation.bottom++;
rcLocation.top++;

}
rv = mBaseWindow->InitWindow(nsNativeWidget(m_hWnd),

nsnull,0, 0, rcLocation.right - rcLocation.left,
rcLocation.bottom - rcLocation.top);

rv = mBaseWindow->Create();

nsWeakPtr weakling
(dont_AddRef(NS_GetWeakReference(NS_STATIC_CAST
(nsIWebProgressListener*, mpBrowserImpl))));

void)mWebBrowser->AddWebBrowserListener(weakling,
 NS_GET_IID(nsIWebProgressListener));

Finally the webbrowser window is shown.

Using session history to navigate
The pointer to nsIWebNavigation saved above is used to move back through session
history.

Resources
The mozilla.org home page: www.mozilla.org

The embedding project area home page: mozilla.org/projects/embedding/

Cross-reference for the entire codebase: lxr.mozilla.org/seamonkey/

Bugzilla, the bug tracking tool: bugzilla.mozilla.org

Licensing information: www.mozilla.org/MPL/

Getting the source and build instructions: mozilla.org/source.html

Embedding samples: mozilla.org/projects/embedding/examples/index.html

The list of frozen interfaces: lxr.mozilla.org/seamonkey/
search?string=%40status+FROZEN

mBaseWindow->SetVisibility(PR_TRUE);

nsCOMPtr<nsIWebBrowserPrint>
print(do_GetInterface(mWebBrowser));

if (print)
{print->GetNewPrintSettings
(getter_AddRefs(m_PrintSettings));
}

return S_OK;
}

void CBrowserView::OnNavBack()
{
if(mWebNav)
mWebNav->GoBack();
}

 15

http://www.mozilla.org
http://mozilla.org/projects/embedding/
http://lxr.mozilla.org/seamonkey/
http://bugzilla.mozilla.org
http://www.mozilla.org/MPL/
http://mozilla.org/source.html
http://mozilla.org/projects/embedding/examples/index.html
http://lxr.mozilla.org/seamonkey/search?string=%40status+FROZEN
http://lxr.mozilla.org/seamonkey/search?string=%40status+FROZEN

The Complete nsCOMPtr User's Manual:www.mozilla.org/projects/
xpcom/nsCOMPtr.html

Performance tools: www.mozilla.org/performance/

XPCOM project home page: mozilla.org/projects/xpcom/

Building XPCOM components: books.mozdev.org/chapters/ch08.html

XPIDL: mozilla.org/scriptable/xpidl/index.html

XPConnect: mozilla.org/scriptable/index.html

Guide to the Mozilla string classes: mozilla.org/projects/xpcom/string-
guide.html

XUL: www.mozilla.org/docs/xul/xulnotes/index.html

XBL: www.mozilla.org/projects/xbl/xbl.html

Editor embedding: www.mozilla.org/editor/editor-embedding.html

Source for the MFCEmbed sample: lxr.mozilla.org/seamonkey/source/
embedding/tests/mfcembed/

Appendix: Data Flow Inside Gecko
While it isn’t strictly necessary for embedders to understand how Gecko does what it
does, a brief overview of the main structures involved as Gecko puts bits on a display
may be helpful.

http://www.mozilla.org/projects/xpcom/nsCOMPtr.html
http://www.mozilla.org/projects/xpcom/nsCOMPtr.html
http://www.mozilla.org/performance/
http://mozilla.org/projects/xpcom/
http://mozilla.org/scriptable/xpidl/index.html
http://mozilla.org/scriptable/index.html
http://mozilla.org/projects/xpcom/string-guide.html
http://mozilla.org/projects/xpcom/string-guide.html
http://www.mozilla.org/docs/xul/xulnotes/index.html
http://www.mozilla.org/projects/xbl/xbl.html
http://www.mozilla.org/editor/editor-embedding.html
http://lxr.mozilla.org/seamonkey/source/embedding/tests/mfcembed/
http://lxr.mozilla.org/seamonkey/source/embedding/tests/mfcembed/
http://books.mozdev.org/chapters/ch08.html

HTML data comes into Gecko either from the network or a local source. The first
thing that happens is that it is parsed, using Gecko’s own HTML parser. Then the
Content Model arranges this parsed data into a large tree. The tree is also known as
the "Document" and its structure is based on the W3C Document Object Model. Any
use of DOM APIs manipulates the data in the Content Model.
Next the data is put into frames using CSS and the Frame Constructor. A frame in this
sense (which is not the same thing as an HTML frame) is basically an abstract box
within which a DOM element will be displayed. This process produces a Frame Tree,
which, like the Content Model, is a tree of data, but this time focussed not on the logi-
cal relationship among the elements but on the underlying calculations needed to dis-
play the data. In the beginning a frame has no size. Using CSS rules specifying how
the elements of the DOM should look when they are displayed, including information
like font type or image size, the eventual size of each frame is calculated. Because the
same data may need to be displayed in different ways — e.g. to a monitor and to a
printer, etc. - a particular Content Model may have more than one Frame Tree associ-
ated with it. In such a case, each individual Frame Tree would belong to a different
"presentation" mode.
Calculations continue as new information flows into the system using a process called
Reflow. As information in the Frame Tree changes, the section of the Frame Tree
involved is marked "dirty" by the Frame Constructor. Reflow repeatedly steps through
the tree, processing every "dirty" item it encounters until all the items it encounters
are "clean". Every item in the Frame Tree has a pointer back to its corresponding item
in the Content Model. A change in the Content Model, say through using the DOM
APIs to change an element from hidden to visible, produces an equivalent change in
the Frame Tree. It’s important to note that all of these operations are purely data
manipulations. Painting to the display itself is not yet involved to this point.
The next stage is the View Manager. With a few small exceptions that have to do with
prompting the Frame Constructor to load graphics, the View Manager is the first place
 17

in the process that accesses the native OS. Delaying OS access until this point both
helps Gecko to run more quickly and makes cross-platform issues easier to deal with.
The View Manger is the place where Gecko figures out where on the display the data
will need to be drawn. It then tells the system that that area is "invalid" and needs to
be repainted. The actual painting is managed by the gfx submodule, while other low-
level system operations are run through the widget submodule, which handles things
like platform specific event (like mouse clicks) processing loops and accessing system
defaults (colors, fonts, etc.) Both gfx and widget are system specific.
If you want to take a look at the code underlying these structures, the code for the
Content Model can be found in /mozilla/content, for the Frame Constructor, CSS, and
Reflow in /mozilla/layout, for the View Manager in /mozilla/view, and for the DOM
APIs in /mozilla/dom.

