
Inside the Lizard
A Look at the Mozilla Technology and Architecture

Mike Shaver
shaver@mozilla.org

Michael Ang
mang@subcarrier.org

May 29, 2000

The Mozilla “platform” is composed of a set of
technologies and components that can be used to
build cross-platform applications. This architecture
was designed for the Mozilla browser and Netscape
Communicator 6.0 but can also be used for other
types of applications.

This document provides an overview of the key
technologies used in the Mozilla architecture,
including a discussion of the component object
model, scripting components, creating cross-
platform user interfaces, and accessing data sources.
Porting the architecture to new platforms will aslo
be discussed.

1 Introduction

After the initial release of the Mozilla code on March
31, 1998, there were many enthusiastic attempts
to make that codebase (known as the “Classic”
code) provide features such as incremental layout
with reflow, fully compliant CSS and a Level-1
Document Object Model. The nature of the Classic
code, though, made such tasks difficult and error-
prone. Instead of continuing work on the original
code base, the current architecture was created that
incorporated the painfully learned lessons about
cross-platform front-end development.

The new code base was designed to provide a
framework of components upon which the web
browser Mozilla could be built. The framework
is flexible enough that it can now be used as
the base for applications other than a browser.
Creating a new cross-platform application can be as
easy as putting together existing components using
JavaScript and XUL. New components to extend
Mozilla’s functionality can be written in C++ or
JavaScript.

While Mozilla lacks many features required of
a full-blown application platform (such a remote
procedure calls), there are still many interesting
applications that can be created. Some novel uses
of the Mozilla framework include XMLTerm, an X-
Term replacement, and ChatZilla, a full-featured
chat client.

2 Modular Code: XPCOM

The XPCOM system is a cross-platform variant
of the DCE/Microsoft COM system for building
binary components. We use it to provide clear
“pluggablity” and modularity boundaries between
sections of code, and also to manage object lifecycles
through reference counting.

XPCOM strongly separates interface from
implementation, down to the binary level. These
two abstractions map to two C++ classes: an
interface class and an implementation class. The
client interacts directly only with the interface
class, which contains no implementation details
and has a well-defined binary format.

Since clients of XPCOM know only about the
interface to an object, the implementation can be
safely upgraded or replaced, compiler differences are
hidden, and objects can even be implemented in
another language (e.g. JavaScript).

2.1 XPCOM techniques

XPCOM objects can expose multiple interfaces
(somewhat similar to multiple inheritance).
QueryInterface is XPCOM’s equivalent of C++’s
dynamic cast. To access an object through a



particular interface, you QueryInterface for that
interface.

Since the same object may be accessed through
several different interface pointers, reference
counting is used to keep track of the lifetime of
objects. When a client receives an interface pointer,
the reference count on the underlying object is
increased by one. Once the client is done with the
interface pointer it calls Release on the pointer,
and the reference count is decremented. Once the
reference count reaches zero, the object is destroyed.
nsCOMPtr is a smart pointer implementation that
takes care of these details automagically.

XPIDL is the cross-platform interface definition
language used for XPCOM. XPIDL files
are processed to generate C++ headers for
XPCOM objects, typelibs to allow calling objects
dynamically from JavaScript (and potentially other
languages), and generate online documentation.

2.2 XPCOM and JavaScript
interoperation

Using XPConnect, it is possible for JavaScript to
interoperate with XPCOM without needing any
glue code. XPConnect uses the runtime type
information previously built from the XPIDL.

Code using XPCOM interfaces should not
generally know or care what language is used
to implement underlying objects. XPConnect
allows JavaScript to interoperate seamlessly with
XPCOM. JavaScript code can manipulate XPCOM
objects, and JavaScript objects can present
XPCOM interfaces to be called by other XPCOM
code.

XPConnect uses the runtime information generated
from XPIDL interface definition files when
JavaScript calls into XPCOM. No glue code needs
to be written, and this results in significant memory
and disk footprint savings.

Connection technologies for other languages
are possible. (Sun engineers are currently
investigating interoperation of XPCOM and
Java, and ActiveState recently announced a project
to provide connection technologies for Perl and
Python.)

3 User Interface: XPToolkit

Historically, developing the user interface required
writing C++ code for each platform of interest.
Mozilla provides a set of tools collectively called
the Cross-Platform Toolkit (XPToolkit) that can
be used to define user interface appearance and
application behaviour using W3C standards.

XPToolkit minimizes the amount of platform
specific code needed for building applications like
browsers and mail clients. XPToolkit makes
available a standard set of widgets and graphics
services to render UI elements, allowing pixel level
control of UI if necessary.

3.1 XUL

XUL, which stands for XML-based UI Language
and is pronounced “zuul”, provides a way to specify
UI appearance and application logic using an XML
dialect, CSS, and JavaScript (or C++).

XUL is simply XML with specific meaning defined
for a few element types, and into which JavaScript
can be scattered. The elements are known as
XUL “widgets” and include UI controls such as
menus, trees, and drop-down boxes. XUL makes it
easy for developers with a knowledge of an SGML
(such as HTML) and JavaScript to design UI: this
opens up UI development to a whole new set of
programmers. The JavaScript application logic can
access XPCOM (and thus most libraries) using
XPConnect, making it possible to build complete
applications.

The combination of appearance and behaviour is
called “chrome”. Chrome is loaded from .xul files
and associated JavaScript and CSS file. The script
code in these files have full power to change and
extend the behaviour of the browser, so this is
allowed only from trusted scripts. By contrast,
“skins” are combinations of graphics and CSS that
only change the appearance of the browser, not
behaviour.

Most of the UI for the browser is written in XUL,
and is thus open for hacking. Adding a button on
the toolbar that opens a tree control and populates
it from a remote data source is simply a matter of
writing some XML and JavaScript.



XUL makes it possible to develop the UI using
familiar web technologies. One of the goals of
XUL is to enable random hackers to create new
features easily and share them with others. This will
allow the UI to enjoy the same massively parallel
development that has benefited other Open Source
projects.

The recently introduced eXtensible Bindings
Language (XBL) provides even more flexibility.
For example, XBL allows for the creation of
new widgets which can be accessed from XUL,
automatically picking up methods and properties
from XPCOM components, and extending event
handlers including capturing keypresses.

3.2 XBL

XUL provides many existing widgets such as text
boxes and scroll bars. The eXtensible Bindings
Language (XBL) makes it possible modify existing
XUL elements and create new ones.

XBL files contain a set of bindings, each of which
describes the behaviour of a XUL element. Bindings
may specify the following: child content, such as
other XUL elements methods and properties, where
the implementation and data can be either inline
JavaScript or point to an XPCOM interface events
that the element will handle, such as key and mouse
events custom style properties

For example, a new widget for a labelled image could
be created by extending the existing box widget by
adding an image and a label:

<binding name="captionbinding" extends="xul:box">

<content>

<xul:box

xmlns="there.is.only.xul">

<xul:image inherits="image:src"/>

<xul:text inherits="caption:value"/>

<xul:box/>

</content>

</binding>

We then attach the binding using the following code,
which is found in the corresponding CSS file.

captionimg

behavior: url("mybindings.xbl#captionbinding");

}

Code snippet starts with the name of the new
element being defined (captionimg). The URL
specifies the filename followed by the name of the
binding (captionbinding) that we defined earlier.

The resulting compound element would be used
from XUL like this:

<captionimg

caption="My image caption" image="myimage.png"/>

3.3 XPFE

The Cross-Platform Front End (XPFE) is the name
given the Mozilla browser front end (chrome). The
definition and use of this term is a bit loose, but the
trend now is to use “XPFE” when referring to the
specific Mozilla browser user interface built on top
of the generic XPToolkit.

4 RDF

The Resource Description Framework1 is a graph-
based model for describing Internet resources (like
web pages and email messages), and how these
resources relate to each other. Mozilla’s use of RDF
stretches the common usage of “Internet resources”,
though, and adds resources like bookmarks, local file
system information and address book content to the
mix.

4.1 RDF in Brief

RDF allows arbitrary hierarchical content to
be manipulated through a common API, and
serialized in a standard syntax. This serialization
syntax, known as RDF/XML, allows RDF-using
applications to communicate their graphs to each
other, and store those graphs persistently.

1http://www.w3.org/RDF



Within Mozilla, there are APIs provided to
manipulate RDF nodes (resources) and assertions
(links between nodes, like graph arcs or objects
holding “pointers” to other resources). This allows
Mozilla components to act as RDF “datasources”
and perform operations on those datasources,
without having to go through the RDF/XML
serialization syntax. The XPCOM interfaces allow
you to create resources; add, remove and query
assertions between resources; and access registered
datasources.

4.2 Uses of RDF in Mozilla

RDF is used in Mozilla to represent many kinds
of interesting data, from bookmarks and address
books, to mail folders and remote search engines.
Examples of RDF usage in Mozilla include:

• Bookmarks

• Mail folders

• Newsgroups

• Remote site maps

• “Sidebar” or “Flash panel” content

• Browser history and browsing profile

• Address book

• “Related Links”

• Local filesystems

• Remote FTP sites

• Web search engines

4.3 RDF and XUL

To display RDF data in Mozilla, the XUL tree
widget is usually employed:

<tree datasources="rdf:bookmarks"

ref="NC:BookMarksRoot">

<template>

<treechildren>

<treeitem uri="rdf:*">

<treerow>

<treecell

value="rdf:#Name"/>

<treecell

value="rdf:#URL"/>

</treerow>

</treeitem>

</treechildren>

</template>

</tree>

The bookmarks source is specified by
rdf:bookmarks and the resource used to “root”
the tree is NC:BookmarksRoot.

The items in the tree are generated using a XUL
template. The uri attribute is used to designate
that a given element will be repeated in the
template. In this example one treeitem with
a contained treerow and two treecells will be
generated for each resource found.

The assertions on the bookmarks graph named by
Name and URL are used to populate the cells of the
tree grid, and adding or removing new assertions to
the RDF graph used will cause the tree widget to
automatically update with new data. (Typesetting
concerns required a small liberty to be taken with
the example: URIs are used for property naming,
and the Mozilla datasources would have used
rdf:http://home.netscape.com/NC-rdf#Name
and rdf:http://home.netscape.com/NC-rdf#URL
as the canonical rdf:#Name and rdf:#URL assertion
names, respectively.)

With XUL templates it is possible to create a set of
rules to create different types of elements based on
the RDF data. For example, rules are used in the
bookmark management XUL template to display
actual bookmark entries differently from bookmark
separators, even though both are contained in the
same RDF resource.

4.4 Creating New Datasources

To reflect another kind of resource into the
RDF universe, a new RDF datasource must be
implemented. The nsIRDFDataSource interface
must be implemented directly if the datasource
wishes to react to RDF operations in a specialized
manner, such as adding a file to the filesystem



when a new assertion is made, and is described in
mozilla/rdf/base/idl/nsIRDFDataSource.idl.
If the datasource does not require special handling
of the nsIRDFDataSource API operations,
XPCOM aggregation can be used to let the
nsIRDFInMemoryDataSource handle most of the
RDF operations. This approach is often used
when the datasource is parsing data in a non-RDF
format, and perhaps writes changes out to the
original storage when the RDF engine has finished
whatever modifications are performed.

When a datasource generates a graph to represent
its chosen data, the selection of “vocabulary”
is key: merging, sorting and other useful RDF
features require that the participating datasources
use the same assertion names. In addition to
the NC vocabulary used for many of the Mozilla
datasources, the RDF Schema Specification2 and
Dublin Core3 provide other standard vocabularies
for describing electronic resources.

Once your datasource is implemented, you must
use the component manager to register your
datasource with the RDF infrastructure. Detailed
discussion of this process is beyond the scope of
this document, but a good example can be seen in
mozilla/rdf/build/nsRDFFactory.cpp.

A more detailed treatment of issues involved in
RDF datasource implementation is available in the
“datasource howto” 4.

5 Porting Issues

In order to port Mozilla to a new platform,
three major components require attention. (It is
assumed that there is an appropriately capable
C/C++ toolchain available — gcc 2.9.x and egcs are
suitable. If the toolchain is not sufficiently capable,
additional effort may be required: as an example,
the OpenVMS port had issues with a linker that
did not distinguish symbols on the basis of case.)

The foundation of Mozilla’s portability is the
Netscape Portable Runtime (NSPR). Applications
built on NSPR can use system facilities such

2http://www.w3.org/TR/PR-rdf-schema/
3http://purl.oclc.org/dc/
4http://www.mozilla.org/rdf/doc/datasource-

howto.html

as threads, thread synchronization, I/O, interval
timing, atomic operations, and several other low-
level services in a platform-independent manner.
Much of the work in porting Mozilla to a new
platform is in porting NSPR.

The gfx library provides primitive graphics and
rendering capabilities, including line drawing, image
rendering and text display. The Mozilla source
contains implementations of gfx widgets (such
as menus, buttons, scrollbars, text entries and
checkboxes) which are rendered from primitives
without the assistance of the platform’s native
widget library. This permits Mozilla to fully
support HTML4 rendering requirements, including
partial opacity for form elements and use of
animated images in backgrounds. However, in order
to integrate Mozilla into a desktop environment
such as KDE, it is necessary to port at least message
passing, timers, and menus from the underlying
toolkit (Qt in this case).

Before the existance of gfx, it was necessary to port
the widget library to use the system’s native widget
set (such as GTK+, Qt, Windows, or Macintosh).
As of May 2000, the only remaining dependency on
the native widget library is for scrollbars in HTML
list and combo boxes. This dependency is in the
process of being removed.

xptcall is used by XPConnect and is required on
all platforms. Porting xptcall requires knowledge
of the platform’s calling conventions at the assembly
language level (this isn’t as bad as it may sound).
As of May 2000, there are a handful of platforms
(including some Linux platforms) that do not have
a working xptcall. Significant detail on the topic
of porting the xptcall library, as well as a list of
completed and developing ports, can be found in
mozilla/xpcom/libxpt/xptcall/porting.html.

6 Breaking News

An incomplete list of current projects in the Mozilla
codebase at the time of this writing:

• The newly formed Architecture Group will
work on footprint and performance issues, API
design and review, and contribute to making
Mozilla a stable platform for developers.



• A “Mozilla 1.0” architecture freeze is brewing
for later this year. The freeze will involve a
review of the public APIs and blessing a core
set of XPCOM interfaces, moving to new style
progids, and using the new string APIs, and a
freeze of the DOM. After the freeze developers
should have a stable base upon which to create
applications with the Mozilla framework.

7 Acknowledgements

The authors would like to specifically thank the
following for their documentation and instruction:

• Chris Waterson (waterson@netscape.com)

• David Hyatt (hyatt@netscape.com)

• Scott Collins (scc@netscape.com)

• John Bandhauer (jband@netscape.com)

• Warren Harris (warren@netscape.com)

• Christopher Blizzard (blizzard@mozilla.org)

• Brendan Eich (brendan@mozilla.org)

In addition, all the Mozilla developers, testers,
documenters, kibbitzers and cheerleaders are
deserving of heartfelt thanks for making Mozilla
such an exciting project on which to work.

This document was originally published in July 1999
and was updated in May 2000 by Michael Ang. Any
existing inaccuracies are mine alone.

8 Additional Information

• Useful URLs.

– Roadmap:
http://www.mozilla.org/roadmap.html

– XPCOM:
http://www.mozilla.org/projects/xpcom/

– XPConnect:
http://www.mozilla.org/scriptable/

– XPToolkit (XUL/XBL):
http://www.mozilla.org/xpfe/

– RDF:
http://www.mozilla.org/rdf/doc/

– Weekly status:
http://www.mozilla.org/status/

– “SeaMonkey” (Mozilla 1.0):
http://www.mozilla.org/projects/seamonkey/

– ChatZilla
http://www.mozilla.org/projects/

rt-messaging/chatzilla/

– XMLTerm
http://xmlterm.org

• Source browsing. The complete Mozilla
source tree is browsable via the LXR web
interface, and the hyperlinked version is
updated approximately every 15 minutes.
To view a source file through LXR, remove
the leading mozilla/ prefix and replace with
http://lxr.mozilla.org/mozilla/source.
For example, mozilla/js/src/jsapi.c
becomes http://lxr.mozilla.org/mozilla/
source/js/src/jsapi.c (modulo typesetting
damage).

• Mailing lists and newsgroups. Mozilla
hosts several dozen mailing list/newsgroup
pairs related to a variety of topics.
http://www.mozilla.org/community.html
lists many of them, and the general
forms mozilla-topic@mozilla.org and
netscape.public.mozilla.topic hold for
all. Messages sent to the mailing list or posted
to the newsgroup appear in both places. New
fora are announced on the Mozilla web site
periodically, as they are created.


