
JavaScript 2.0: Evolving a Language for Evolving Systems 1

JavaScript 2.0:
Evolving a Language for Evolving Systems

Waldemar Horwat
waldemar@acm.org

Abstract
JavaScript 2.0 is the next major revision of the JavaScript language. Also known as ECMAScript
Edition 4, it is being standardized by the ECMA organization. This paper summarizes the needs
that drove the revision in the language and then describes some of the major new features of the
language to meet those needs — support for API evolution, classes, packages, object protection,
dynamic types, and scoping. JavaScript is a very widely used language, and evolving it presented
many unique challenges as well as some opportunities. The emphasis is on the rationale, insights,
and constraints that led to the features rather than trying to describe the complete language.

1 Introduction

1.1 Background
JavaScript [6][8] is a web scripting language
invented by Brendan Eich at Netscape. This
language first appeared in 1996 as
JavaScript 1.0 in Navigator 2.0. Since then
the language has undergone numerous addi-
tions and revisions [6], and the most recent
released version is JavaScript 1.5.

JavaScript has been enormously successful
— it is more than an order of magnitude
more widely used than all other web client
languages combined. More than 25% of web
pages use JavaScript.

JavaScript programs are distributed in
source form, often embedded inside web
page elements, thus making it easy to author
them without any tools other than a text
editor. This also makes it easier to learn the
language by examining existing web pages.

There is a plethora of synonymous names
for JavaScript. JavaScript, JScript, and
ECMAScript are all the same language.
JavaScript was originally called LiveScript
but was renamed to JavaScript just before it
was released. JavaScript is not related to
Java, although the two language implemen-
tations can communicate with each other in

Netscape browsers through an interface
called LiveConnect.

JavaScript as a language has computational
facilities only — there are no input/output
primitives defined within the language. In-
stead, each embedding of JavaScript within
a particular environment provides the means
to interact with that environment. Within a
web browser JavaScript is used in conjunc-
tion with a set of common interfaces, in-
cluding the Document Object Model [11],
which allow JavaScript programs to interact
with web pages and the user. These inter-
faces are described by separate standards
and are not part of the JavaScript language
itself. This paper concentrates on the
JavaScript language rather than the inter-
faces.

1.2 Standardization
After Netscape released JavaScript in Navi-
gator 2.0, Microsoft implemented the lan-
guage, calling it JScript, in Internet Ex-
plorer 3.0. Netscape, Microsoft, and a num-
ber of other companies got together and
formed the TC39 committee in the ECMA
standards organization [2] in order to agree
on a common definition of the language.
The first ECMA standard [3], calling the
language ECMAScript, was adopted by the
ECMA general assembly in June 1997 as the
ECMA-262 standard. The second edition of

JavaScript 2.0: Evolving a Language for Evolving Systems 2

this standard, ECMA-262 Edition 2 [4], con-
sisted mainly of editorial fixes gathered in
the process of making the ECMAScript ISO
standard 16262. The third edition of the
ECMAScript standard [5] was adopted in
December 1999 and added numerous new
features, including regular expressions,
nested functions and closures, array and ob-
ject literals, the switch and do-while
statements, and exceptions. JavaScript 1.5
fully implements ECMAScript Edition 3.

I’ve been involved at Netscape with both the
implementation and standardization of
JavaScript since 1998. I wrote parts of the
ECMAScript Edition 3 standard and am cur-
rently the editor of the draft ECMAScript
Edition 4 standard.

In Editions 1 and 2, the ECMA committee
standardized existing practice, as the lan-
guage had already been implemented by
Netscape, and Microsoft closely mirrored
that implementation. In Edition 3, the role of
the committee shifted to become more active
in the definition of new language features
before they were implemented by the ven-
dors; without this approach, the vendors’
implementations would have quickly di-
verged. This role continues with Edition 4,
and, as a result, the interesting language de-
sign discussions take place mainly within
the ECMA TC39 (now TC39TG1) working
group.

This paper presents the results of a few of
these discussions. Although many of the is-
sues have been settled, Edition 4 has not yet
been approved or even specified in every
detail. It is still likely to change and should
definitely be considered a preliminary draft.

1.3 Outline
Section 2 gives a brief description of the
existing language JavaScript 1.5. Section 3
summarizes the motivation behind Java-
Script 2.0. Individual areas and decisions are
covered in subsequent sections: types (Sec-
tion 4); scoping and syntax issues (Sec-
tion 5); classes (Section 6); namespaces,
versioning, and packages (Section 7); and

attributes and conditional compilation (Sec-
tion 8). Section 9 concludes.

2 JavaScript 1.5
JavaScript 1.5 (ECMAScript Edition 3) is an
object-based scripting language with a syn-
tax similar to C and Java. Statements such as
i f , w h i l e , f o r , s w i t c h , and
throw/try/catch will be familiar to
C/C++ or Java programmers. Functions,
declared using the function keyword, can
nest and form true closures. For example,
given the definitions

function square(x) {
 return x*x;
}

function add(a) {
 return function(b) {
 return a+b;
 }
}

evaluating the expressions below produces
the values listed after the fi symbols:

square(5) fi 25
var f = add(3);
var g = add(6);
f(1) fi 4;
g(5) fi 11;

A function without a return statement
returns the value undefined.

Like Lisp, JavaScript provides an eval
function that takes a string and compiles and
evaluates it as a JavaScript program; this
allows self-constructing and self-modifying
code. For example:

eval("square(8)+3") fi 67

eval("square = f") fi The
source code for function f
square(2) fi 5

2.1 Values and Variables
The basic values of JavaScript 1.5 are num-
bers (double-precision IEEE floating-point
values including +0.0, –0.0, +∞, –∞, and
NaN), booleans (true and false), the

JavaScript 2.0: Evolving a Language for Evolving Systems 3

special values null and undefined, im-
mutable Unicode strings, and general ob-
jects, which include arrays, regular expres-
sions, dates, functions, and user-defined ob-
jects. All values have unlimited lifetime and
are deleted only via garbage collection,
which is transparent to the programmer.

Variables are not statically typed and can
hold any value. Variables are introduced
using var declarations as in:

var x;
var y = z+5;

An uninitialized variable gets the value
undefined . Variable declarations are
lexically scoped, but only at function
boundaries — all declarations directly
within a function apply to the entire func-
tion, even above the point of declaration.
Local blocks do not form scopes. If a func-
tion accesses an undeclared variable, it is
assumed to be a global variable. For exam-
ple, in the definitions

function init(a) {
 b = a;
}

function strange(s, t) {
 a = s;
 if (t) {
 var a;
 a = a+a;
 }
 return a+b;
}

function strange defines a local variable
a. It doesn’t matter that the var statement is
nested within the if statement — the var
statement creates a at the beginning of the
function regardless of the value of t.

At this point evaluating
strange("Apple ", false)

signals an error because the global variable
b is not defined. However, the following
statements evaluate successfully because
init creates the global variable b:

init("Hello") fi undefined

strange("Apple ", false) fi
"Apple Hello"
strange(20, true) fi
"40Hello"

The last example also shows that + is poly-
morphic — it adds numbers, concatenates
strings, and, when given a string and a num-
ber, converts the number to a string and
concatenates it with the other string.

2.2 Objects
JavaScript 1.5 does not have classes; in-
stead, general objects use a prototype
mechanism to mimic inheritance. Every ob-
ject is a collection of name-value pairs
called properties, as well as a few special,
hidden properties. One of the hidden prop-
erties is a prototype link1 which points to
another object or null.

When reading property p of object x using
the expression x.p, the object x is searched
first for a property named p. If there is one,
its value is returned; if not, x’s prototype
(let’s call it y) is searched for a property
named p. If there isn’t one, y’s prototype is
searched next and so on. If no property at all
is found, the result is the value
undefined.

When writing property p of object x using
the expression x.p = v, a property named p
is created in x if it’s not there already and
then assigned the value v. x’s prototype is
not affected by the assignment. The new
property p in x will then shadow any prop-
erty with the same name in x’s prototype and
can only be removed using the expression
delete x.p.

A property can be read or written using an
indirect name with the syntax x[s], where s
is an expression that evaluates to a string (or
a value that can be converted into a string)
representing a property name. If s contains
the string "blue" , then the expression
x[s] is equivalent to x.blue. An array is

1 For historical reasons in Netscape’s JavaScript this hidden
prototype link is accessible as the property named
__proto__, but this is not part of the ECMA standard.

JavaScript 2.0: Evolving a Language for Evolving Systems 4

an object with properties named "0", "1",
"2", …, "576", etc.; not all of these need
be present, so arrays are naturally sparse.

An object is created by using the new op-
erator on any function call: new f(args).
An object with no properties is created be-
fore entering the function and is accessible
from inside the function via the this vari-
able.

The function f itself is an object with several
properties. In particular, f.prototype
points to the prototype that will be used for
objects created via new f(args).2 An ex-
ample illustrates these concepts:

function Point(px, py) {
 this.x = px;
 this.y = py;
}

a = new Point(3,4);
origin = new Point(0,0);

a.x fi 3
a["y"] fi 4

The prototype can be altered dynamically:
Point.prototype.color =
"red";

a.color fi "red"
origin.color fi "red"

The object a can shadow its prototype as
well as acquire extra properties:

a.color = "blue";
a.weight = "heavy";

a.color fi "blue"
a.weight fi "heavy"
origin.color fi "red"
origin.weight fi undefined

Methods can be attached to objects or their
prototypes. A method is any function. The

2 Using the notation from the previous footnote, after
o = new f(args), o.__proto__ == f.prototype.
f.prototype is not to be confused with function f’s own
prototype f.__proto__, which points to the global proto-
type of functions Function.prototype.

method can refer to the object on which it
was invoked using the this variable:

function Radius() {
 return Math.sqrt(
 this.x*this.x +
 this.y*this.y);
}

The following statement attaches Radius
as a property named radius visible from
any Point object via its prototype:

Point.prototype.radius =
Radius;

a.radius() fi 5

The situation becomes much more compli-
cated when trying to define a prototype-
based hierarchy more than one level deep.
There are many subtle issues [9], and it is
easy to define one with either too much or
too little sharing.

2.3 Permissiveness
JavaScript 1.5 is very permissive — strings,
numbers, and other values are freely coerced
into one another; functions can be called
with the wrong number of arguments; global
variable declarations can be omitted; and
semicolons separating statements on differ-
ent lines may be omitted in unambiguous
situations. This permissiveness is a mixed
blessing — in some situations it makes it
easier to write programs, but in others it
makes it easier to suffer from hidden and
confusing errors.

For example, nothing in JavaScript distin-
guishes among regular functions (square
in the examples above), functions intended
as constructors (Point), and functions in-
tended as methods (Radius). JavaScript
lets one call Point defined above as a
function (without new and without attaching
it to an object),

p = Point(3)

which creates global variables x and y if
they didn’t already exist (or overwrites them
if they did) and then writes 3 to x and

JavaScript 2.0: Evolving a Language for Evolving Systems 5

undefined to y. The variable p gets the
value undefined. Obvious, right? (If this
is obvious, then you’ve been spending far
too much time reading language standards.)3

2.4 Exploring Further
This is only a brief overview of JavaScript
1.5. See a good reference [6] for the details.
To get an interactive JavaScript shell, type
javascript: as the URL in a Netscape
browser or download and compile the source
code for a simple stand-alone JavaScript
shell from [8].

3 JavaScript 2.0 Motivation
JavaScript 2.0 is Netscape’s implementation
of the ECMAScript Edition 4 standard cur-
rently under development. The proposed
standard is motivated by the need to achieve
better support for programming in the large
as well as fix some of the existing problems
in JavaScript (section 5).

3.1 Programming in the Large
As used here, programming in the large does
not mean writing large programs. Rather, it
refers to:

• Programs written by more than one per-
son

• Programs assembled from components
(packages)

• Programs that live in heterogeneous en-
vironments

• Programs that use or expose evolving
interfaces

• Long-lived programs that evolve over
time

Many applications on the web fall into one
or more of these categories.

3 The reason that global variables x and y got created is that
when one doesn’t specify a this value when calling a func-
tion such as Point, then this refers to the global scope
object; thus this.x = px creates the global variable x.

3.2 Mechanisms
A package facility (separable libraries that
export top-level definitions — see section 7)
helps with some of the above requirements
but, by itself, is not sufficient. Unlike exist-
ing JavaScript programs which tend to be
monolithic, packages and their clients are
typically written by different people at dif-
ferent times. This presents the problem of
the author or maintainer of a package not
having access to all of its clients to test the
package, or, conversely, the author of a cli-
ent not having access to all versions of the
package to test against — even if the author
of a client could test his client against all ex-
isting versions of a package, he is not able to
test against future versions. Merely adding
packages to a language without solving
these problems would not achieve robust-
ness; instead, additional facilities for defin-
ing stronger boundaries between packages
and clients are needed.

One approach that helps is to make the lan-
guage more disciplined by adding optional
types and type-checking (section 4). Another
is a coherent and disciplined syntax for de-
fining classes (section 6) together with a ro-
bust means for versioning of classes. Unlike
JavaScript 1.5, the author of a class can
guarantee invariants concerning its instances
and can control access to its instances,
making the package author’s job tractable.
Versioning (section 7) and enforceable in-
variants simplify the package author’s job of
evolving an already-published package, per-
haps expanding its exposed interface, with-
out breaking existing clients. Conditional
compilation (section 8) allows the author of
a client to craft a program that works in a
variety of environments, taking advantage of
optional packages if they are provided and
using workarounds if not.

To work in multi-language environments,
JavaScript 2.0 provides better mappings for
data types and interfaces commonly exposed
by other languages. It includes support for
classes as well as previously missing basic
types such as long.

JavaScript 2.0: Evolving a Language for Evolving Systems 6

3.3 Non-Goals
JavaScript 2.0 is intended for a specific
niche of scripting languages. It is meant to
be a glue language. It is not meant to be:

• a high-performance language
• a language for writing general-purpose

applications such as spreadsheets, word
processors, etc.

• a language for writing huge programs
• a stripped-down version of an existing

language

Although many of the facilities provided
improve performance, that by itself is not
their reason for inclusion in the language.

4 Type System
JavaScript 2.0 supports the notion of a type,
which can be thought of as a subset of all
possible values. There are some built-in
types such as Object , Number, and
String; each user-defined class (section 6)
is also a type.

The root of the type hierarchy is Object.
Every value is a member of the type
Object. Unlike in JavaScript 1.5, there is
no real distinction between primitive values
and objects4.

Unlike in C and Java, types are first-class
values. Type expressions are merely value
expressions that evaluate to values that are
types; therefore, type expressions use the
same syntax as value expressions.

4.1 Type Declarations
Variables in JavaScript 2.0 can be typed us-
ing the syntax

4 The bizarre JavaScript 1.5 dichotomy between String,
Number, and Boolean values and String, Number, and
Boolean objects is eliminated, although an implementation
may preserve it as an optional language extension for com-
patibility. All JavaScript 2.0 values behave as though they are
objects — they have methods and properties — although
some of the more important classes such as String ,
Number, etc. are final and don’t allow the creation of
dynamic properties, so their instances can be transparently
implemented as primitives.

var v:type = value;

where v is the name of the variable and type
is a constant expression that evaluates to a
type. Types can also be attached to function
parameters and results.

A variable declared with a type is guaran-
teed to always hold an element of that type5.
Assigning a value to that variable coerces
the value to the type or generates an error if
the coercion is not allowed. To catch errors,
such coercions are less permissive than
JavaScript 1.5’s coercions.

4.2 Strong Dynamic Typing
JavaScript 2.0 is strongly typed — type
declarations are enforced. On the other hand,
JavaScript 2.0 is not statically typed — the
compiler does not verify that type errors
cannot occur at run time. To illustrate the
difference, consider the class definitions
below, which define a class A with instance
variable x and a subclass B of A with an ad-
ditional instance variable y:

class A {
 var x;
}

class B extends A {
 var y;
}

Given the above, the following statements
all work as expected:

var a:A = new A;
var b:B = new B;
a = b;
var o = new A;

An untyped variable such as o is considered
to have type Object, so it admits every
value. The following statements, which
would be errors in a statically typed lan-
guage, also execute properly because the
run-time values being assigned are of the
proper type:

5 Actually, the rule is that successfully reading a variable
always returns an element of the variable’s type. This is
because a variable may be in an uninitialized state, in which
case trying to read it generates an error.

JavaScript 2.0: Evolving a Language for Evolving Systems 7

b = a;
a = o;

On the other hand, assigning b = o gen-
erates a run-time error because o does not
currently contain an instance of B.

Because JavaScript is not statically typed,
function sum below also compiles correctly;
it would be a compile-time error in a stati-
cally typed language because the compiler
could not statically prove that c will have a
property named y.6

function sum(c:A) {
 return c.x + c.y;
}

The assignment to z1 will execute success-
fully, while the assignment to z2 will gen-
erates a run-time error when trying to look
up c.y:7

var z1 = sum(new B);
var z2 = sum(new A);

The declaration c:A inside sum is still en-
forced — it requires that the argument
passed to sum must be a member of type A;
thus, an attempt to call sum on an instance
of some class C unrelated to A would gener-
ate an error even if that instance happened to
have properties x and y.

The general principle here is that only the
actual run-time type of an expression’s value
matters — unlike statically typed languages
such as C++ and Java, JavaScript 2.0 has no
concept of the static type of an expression.

6 If class A were final, a smart JavaScript compiler could
issue a compile-time error for function sum because it could
prove that no possible value of c could have a property
named y. The difference here is that a compiler for a stati-
cally typed language will issue an error if it cannot prove that
the program will work without type errors. A compiler for a
dynamically typed language will issue an error only if it can
prove that the program cannot work without type errors;
strong typing is ensured at run time.
7 Unlike with prototype-based objects, by default an attempt
to refer to a nonexistent property of a class instance signals
an error instead of returning undefined or creating the
property. See section 6.

4.3 Rationale
Why doesn’t JavaScript 2.0 support static
typing? Although this would help catch pro-
grammer errors, it would also dramatically
change the flavor of the language. Many of
the familiar idioms would no longer work,
and the language would need to acquire the
concept of interfaces which would then have
to be used almost everywhere. Followed to
the logical conclusion, the language would
become nearly indistinguishable from Java
or C#; there is no need for another such lan-
guage.

Another common question is why
JavaScript 2.0 uses the colon notation for
type annotation instead of copying the C-
like syntax. Embarrassingly, this is a deci-
sion based purely on a historical standards
committee vote — this seemed like a good
idea at one time. There is no technical rea-
son for using this syntax, but it’s too late to
reverse it now (implementations using this
syntax have already shipped), even though
most of the people involved with it admit the
syntax is a mistake.

5 Scoping and Strict Mode
JavaScript 1.5 suffers from a number of de-
sign mistakes (see sections 2.1 and 2.3 for
some examples) that are causing problems in
JavaScript 2.0. One of the problems is that
all var declarations inside a function are
hoisted, which means that they take effect at
the very beginning of the function even if
the var declarations are nested inside
blocks. Furthermore, duplicate var decla-
rations are merged into one. This is fine for
untyped variables, but what should happen
for typed variables? What should the inter-
pretation of the following function be?

function f(a) {
 if (a) {
 var b:String = g();
 } else {
 var b:Number = 17;
 }
}

JavaScript 2.0: Evolving a Language for Evolving Systems 8

Using JavaScript 1.5 rules would interpret
the function as the following, which would
be an error because now b has two different
types:

function f(a) {
 var b:String;
 var b:Number;
 if (a) {
 b = g();
 } else {
 b = 17;
 }
}

JavaScript 2.0 also introduces the notion of
const, which declares a constant rather
than a variable. If b were a const instead
of a var, then even if the two declarations
had the same type then it would be undesir-
able to hoist it:

function f(a) {
 if (a) {
 const b = 5;
 } else {
 const b = 17;
 }
}

should not become:
function f(a) {
 const b;
 if (a) {
 b = 5;
 } else {
 b = 17;
 }
}

For one thing, the latter allows b to be refer-
enced after the end of the if statement.

To solve these problems while remaining
compatible with JavaScript 1.5, Java-
Script 2.0 adopts block scoping with one
exception: var declarations without a type
and in non-strict mode (see below) are still
hoisted to the top of a function. var decla-
rations with a type are not hoisted, const
declarations are not hoisted, and declarations
in strict mode are not hoisted. To help catch
errors, a block nested inside another block
within a function may not redeclare a local

variable. Moreover, if a block declares a lo-
cal variable named x, then an outer block in
the same function may not refer to a global
variable named x. Thus, the following code
is in error because the return statement is
not permitted to refer to the global x:

var x = 3;

function f(a) {
 if (a) {
 var x:Number = 5;
 }
 return x;
}

5.1 Strict Mode
Some of JavaScript 1.5’s quirks can’t be
corrected without breaking compatibility.
For these JavaScript 2.0 introduces the no-
tion of a strict mode which turns off some of
the more troublesome behavior. In addition
to making all declarations lexically scoped,
strict mode does the following:

• Variables must be declared — mis-
spelled variables no longer automati-
cally create new global variables.

• Function declarations are immutable
(JavaScript 1.5 treats any function dec-
laration as declaring a variable that may
be replaced by another function or any
other value at any time).

• Function calls are checked to make sure
that they provide the proper number of
arguments. JavaScript 2.0 provides an
explicit way of declaring functions that
take optional, named, or variable
amounts of arguments.

• Semicolon insertion changes — line
breaks are no longer significant in strict-
mode JavaScript 2.0 source code. Line
breaks no longer turn into semicolons
(as they do in some places in
JavaScript 1.5), and they are now
allowed anywhere between two tokens.

Strict and non-strict parts may be mixed
freely within a program. For compatibility,
the default is non-strict mode.

JavaScript 2.0: Evolving a Language for Evolving Systems 9

6 Classes
In addition to the prototype-based objects of
JavaScript 1.5, JavaScript 2.0 supports class-
based objects. Class declarations are best
illustrated by an example:

class Point {
 var x:Number;
 var y:Number;

 function radius() {
 return Math.sqrt(
 x*x + y*y);
 }

 static var count = 0;
}

A class definition is like a block in that it
can contain arbitrary statements that are
evaluated at the time execution reaches the
class; however, definitions inside the class
define instance (or class if preceded with the
static attribute) members of the class in-
stead of local variables. Classes can inherit
from other classes, but multiple inheritance
is not supported.

Classes can co-exist with prototype-based
objects. The syntax to read or write a prop-
erty (object.property) is the same regardless
of whether the object is prototype or class-
based. By default, accessing a nonexistent
property of a class instance is an error, but if
one places the attribute dynamic in front
of the class declaration then one can create
new dynamic properties on that class’s in-
stances just like for prototype-based objects.

6.1 Rationale
There are a number of reasons classes were
added to JavaScript 2.0:

• Classes provide stronger and more
flexible abstractions than prototypes. A
class can determine the pattern of mem-
bers that each instance must have, con-
trol the creation of instances, and control
both its usage and overriding interfaces.
Furthermore, a JavaScript 2.0 class can

enforce these rules without cooperation
from its clients, which allows well-con-
structed classes to rely on their invari-
ants regardless of what their clients do.

• Classes provide a good basis for
versioning and access control (sec-
tion 7).

• Prototype-based languages naturally
evolve classes anyway by convention,
typically by introducing dual hierarchies
that include prototype and traits objects
[1]. Placing classes in the language
makes the convention uniform and en-
forceable.8

• Complexity of prototypes. Few scrip-
ters are sophisticated enough to cor-
rectly create a multi-level prototype-
based hierarchy in JavaScript 1.5. In
fact, this is difficult even for moderately
experienced programmers.

• The class syntax is much more self-
documenting than analogous Java-
Script 1.5 prototype hierarchies.

• Classes as a primitive in the language
provide a valuable means of reflecting
other languages’ data structures in
JavaScript 2.0 and vice versa.

• Classes are one of the most-requested
features in JavaScript.

Introducing two means of doing something
(classes and prototypes) always carries some
burden of having to choose ahead of time
which means to use for a particular problem
and the subsequent danger of needing to re-
cover from having made the wrong choice.
However, it’s likely that at some point in the
future most programmers will use classes
exclusively and not even bother to learn
prototypes. To make recovery easier, the
syntax for routine usage of classes and pro-
totypes is identical, so changing one to the
other only requires changing the declaration.

8 An earlier JavaScript 2.0 proposal actually reflected a
class’s members via prototypes and traits objects and allowed
any class instance to serve as a base for prototype inheritance
and vice versa. That proposal was dropped because it made
language implementation much more complex than desired
and required the authors of classes to think about not only
constructors but also cloners just in the rare case that a client
used the classes’ instances as prototypes.

JavaScript 2.0: Evolving a Language for Evolving Systems 10

To keep the language simple, there is no no-
tion of Java-like interfaces. Unlike in Java,
these are not necessary for polymorphism
because JavaScript 2.0 is dynamically typed.

7 Namespaces, Versioning,
and Packages

7.1 Packages
A JavaScript 2.0 package is a collection of
top-level definitions declared inside a
package statement. An import statement
refers to an existing package and makes the
top-level definitions from that package
available. The exact scheme used to name
and locate existing packages is necessarily
dependent on the environment in which
JavaScript 2.0 is embedded and will be de-
fined and standardized independently as
needed for each kind of embedding (brows-
ers, servers, standalone implementations,
etc.).

7.2 Versioning Issues
As a package evolves over time it often be-
comes necessary to change its exported in-
terface. Most of these changes involve add-
ing definitions (top-level or class members),
although occasionally a definition may be
deleted or renamed. In a monolithic envi-
ronment where all JavaScript source code
comes preassembled from the same source,
this is not a problem. On the other hand, if
packages are dynamically linked from sev-
eral sources then versioning problems are
likely to arise.

One of the most common avoidable prob-
lems is collision of definitions. Unless this
problem is solved, an author of a package
will not be able to add even one definition in
a future version of his package because that
definition’s name could already be in use by
some client or some other package that a
client also links with. This problem occurs
both in the global scope and in the scopes of
classes from which clients are allowed to
inherit.

7.3 Scenario
Here’s an example of how such a collision
can arise. Suppose that a package provider
creates a package called BitTracker that
exports a class Data . This package be-
comes so successful that it is bundled with
all web browsers produced by the Brows-
ersRUs company:

package BitTracker {

class Data {
 var author;
 var contents;
 function save() {...}
}

function store(d) {
 ...
 storeOnFastDisk(d);
}
}

Now someone else writes a client web page
W that takes advantage of BitTracker.
The class Picture derives from Data and
adds, among other things, a method called
size that returns the dimensions of the
picture:

import BitTracker;

class Picture extends
 Data {
 function size() {...}
 var palette;
};

function orientation(d) {
 if (d.size().h >=
 d.size().v)
 return "Landscape";
 else
 return "Portrait";
}

The author of the BitTracker package,
who hasn’t seen W, decides in response to
customer requests to add a method called
size that returns the number of bytes of
data in a Data object. He then releases the
new and improved BitTracker package.

JavaScript 2.0: Evolving a Language for Evolving Systems 11

BrowsersRUs includes this package with its
latest Navigator 17.0 browser:

package BitTracker {

class Data {
 var author;
 var contents;
 function size() {...}
 function save() {...}
}

function store(d) {
 ...
 if (d.size() > limit)
 storeOnSlowDisk(d);
 else
 storeOnFastDisk(d);
}
}

An unsuspecting user U upgrades his old
BrowsersRUs browser to the latest Naviga-
tor 17.0 browser and a week later is dis-
mayed to find that page W doesn’t work
anymore. U’s grandson tries to explain to U
that he’s experiencing a name conflict on the
size methods, but U has no idea what the
kid is talking about. U attempts to contact
the author of W, but she has moved on to
other pursuits and is on a self-discovery
mission to sub-Saharan Africa. Now U is
steaming at BrowsersRUs, which in turn is
pointing its collective finger at the author of
BitTracker.

Note that this name collision occurs inside a
class and is much more insidious than
merely a conflict among global declarations
from imported packages.

7.4 Solutions
How could the author of BitTracker
have avoided this problem? Simply choos-
ing a name other than size wouldn’t work,
because there could be some other page W2
that conflicts with the new name. There are
several possible approaches:

• Naming conventions. Each defined
name could be prefixed by the full name
of the party from which this definition

originates. Unfortunately, this would get
tedious and unnecessarily impact casual
uses of the language. Furthermore, this
approach is impractical for names of
methods because it is often desirable to
share the same method name across sev-
eral classes to attain polymorphism; this
would not be possible if Netscape’s ob-
jects used com_netscape_length
while MIT’s objects all used
edu_mit_length.

• Explicit imports. Each client package
could be required to import every exter-
nal name it references. This works rea-
sonably well for global names but be-
comes tedious for the names of class
members, which would have to be im-
ported separately for each class.

• Resolve names at compile time. Java
and C# resolve the references of names
to the equivalents of vtable slots at com-
pile time. This way size inside store
can resolve to something other than
size inside orientation. Unfortu-
nately, this approach works only for
statically typed languages. Moreover,
this approach relies on object code
rather than source code being distributed
— the ambiguity is still present in the
source code, and it is only the extra data
inserted by past compilation of the client
against an older version of the package
that resolves it.

• Versions. Package authors could mark
the names they export with explicit ver-
sions. A package’s developer could in-
troduce a new version of the package
with additional names as long as those
names were made invisible to clients
expecting to link with prior versions.

JavaScript 2.0 follows the last approach. It is
the most desirable because it places the
smallest burden on casual users of the lan-
guage, who merely have to import the pack-
ages they use and supply the current version
numbers in the import statements. A pack-
age author has to be careful not to disturb
the set of visible prior-version definitions
when releasing an updated package, but

JavaScript 2.0: Evolving a Language for Evolving Systems 12

authors of dynamically linkable packages
tend to be much more sophisticated than
casual users of the language.

7.5 Namespaces
JavaScript 2.0 employs namespaces to pro-
vide safe versioning. A package can define
and export several namespaces, each of
which provides a different view of the pack-
age’s contents. Each namespace corresponds
to a version of the package’s API.

A JavaScript 2.0 namespace is a first-class
value that is merely a unique token and has
no members, internal structure, or inheri-
tance. JavaScript namespaces are not related
to C++ namespaces. On the other hand, the
designers of other dynamic languages such
as Smalltalk have independently run into the
same versioning problem and come up with
a solution similar to JavaScript 2.0’s (for
example, “Selector Namespaces” in [10]).

Each JavaScript 2.0 name is actually an or-
dered pair namespace::identifier, where
namespace is a simple expression that
evaluates to a namespace value. When a
name is defined without a namespace, the
namespace defaults to the predefined name-
space public.

A use namespace(n) statement allows
unqualified access within a scope to identifi-
ers qualified with namespace n. There is an
implicit use namespace(public)
statement around the whole program. For
convenience, a namespace may also be
specified when importing a package.

Given namespaces, the author of
BitTracker can release the updated
package while hiding the size method
from existing clients that don’t expect to see
it:

package BitTracker {

explicit namespace v2;
use namespace(v2);

class Data {
 var author;
 var contents;
 v2 function size() {...}
 function save() {...}
}

function store(d) {
 ...
 if (d.size() > limit)
 storeOnSlowDisk(d);
 else
 storeOnFastDisk(d);
}
}

If the client W isn’t updated, then it will not
be aware that BitTracker’s size exists
and will be able to refer to its own size
method. If the author of W later wants to
revise her web page to also refer to
BitTracker’s size, then she can either
explicitly refer to v2::size or rename her
size to some other name and then import
v2.9

7.6 Private and Internal
In addition to providing access control
among packages, namespaces also work
well within a package. In fact, early in the
development of JavaScript 2.0 it became
apparent that the notions of private and
internal (visible inside a package only)
are simply special cases of namespaces.
Each class has a predefined private
namespace that can be referenced using the
private keyword inside that class and that

9 This description is glossing over how the author of
BitTracker keeps the name of the namespace itself v2
from colliding with some other global definition inside the
client W. The basic explanation is that the explicit attrib-
ute keeps v2 itself from being imported by default. If a client
knows that v2 is there and won’t cause a conflict, then it can
explicitly request v2 to be imported; there is a convenient
syntax for doing that using an import statement. See [7] for
the details.

JavaScript 2.0: Evolving a Language for Evolving Systems 13

is use’d only inside that class. Different
classes have independent private name-
spaces.

Namespaces offer a finer granularity of
permissions — a class can have some
private members visible only to itself,
but it can also define members defined in a
custom namespace visible to some but not
all of its users.

7.7 Property Lookup
Namespaces control the behavior of looking
up either a qualified property n::p or an
unqualified property p of an object o. It may
appear that there are many ways of defining
this lookup process, but in fact only one way
allows for reliable versioning. The resulting
lookup process appears counterintuitive at
first but is in fact the correct one and de-
serves a closer look.

The process is illustrated by a few examples.
Consider first the simple case of a hierarchy
of three classes:

class A {
 public function f()
 {return "fA"}
}

class B extends A {
 public function f()
 {return "fB"}
}

class C extends B {
 public function f()
 {return "fC"}
}

c = new C;

If one calls c.f(), one would expect to,
and does in fact, get "fC", the most derived
definition of f. This is the essence of object-
oriented semantics.

Now let’s alter the example by putting A and
B’s definitions of f into a namespace N:

class A {
 N function f()
 {return "fA"}
}

class B extends A {
 N function f()
 {return "fB"}
}

class C extends B {
 public function f()
 {return "fC"}
}

c = new C;

Now, if one calls c.f(), the result ought to
d e p e n d o n w h e t h e r a
use namespace(N) is lexically in effect
around the expression c.f(). If it is not,
then the behavior is simple — only the f
defined by C is visible, so once again the
result is "fC".

 If use namespace(N) is lexically in
effect around the expression c.f(), then
all three definitions of f are visible. It would
be tempting to choose the most derived one
("fC"), but this would be incorrect because:

• This is analogous to the BitTracker
scenario. Class C might have defined
function f first and classes A and B later
evolved to define their own, hidden f.
To make this work, any code in the lexi-
cal scope of a use namespace(N)
must not have its meaning hijacked by
anything class C does.

• Suppose that N is p r i v a t e or
internal instead. Class C ought not
to be able to override a private or
internal method, which might lead
to an object security violation.

Other solutions such as signaling an ambi-
guity error when encountering the expres-
sion c.f() or alternately even preventing
class C from being defined are also incorrect
for the same reasons as above.

JavaScript 2.0: Evolving a Language for Evolving Systems 14

The only sensible thing to do is to define the
language so that the expression c.f() in
this case returns "fB". The rule for looking
up an unqualified property p of an object o
is therefore:

• First, find the highest (least derived)
class that defines a property of o named
p that’s visible in the currently used
namespaces; let n be that member’s
namespace (if there is more than one
such namespace in the same class, just
pick one).

• Second, find and return the lowest (most
derived) definition of o.n::p.

The rule for looking up a qualified property
n::p of an object o is the same as in object-
oriented programming — return the lowest
(most derived) definition of o.n::p. Thus,
in the example above c.public::f()
will return " f C " regardless of the
use namespace declarations in effect.

Perhaps not coincidentally, defining the
rules this way makes JavaScript 2.0 much
easier to compile by allowing partial
evaluation of property lookups in many
common cases.

8 Attributes and
Conditional Compilation
Several of the previous sections implicitly
referenced attributes. This section explores
them in a little more detail and uncovers an
interesting and perhaps unexpected use of
attributes for conditional compilation.

In JavaScript 2.0, attributes are simple con-
stant expressions that can be listed in front
of most definitions as well as a few other
statements. Examples of attributes already
mentioned include static , public,
private, explicit, dynamic, final,
as well as namespaces. These are, in fact,
constant expressions, and other attributes
may be defined using const definitions.
Multiple attributes may be listed on the
same definition. Attaching multiple name-
spaces to a definition simultaneously defines

several qualified names, one for each name-
space, which is valuable for many
versioning scenarios.

Attributes may be placed before the opening
braces of a block, which distributes the at-
tributes among all the definitions inside that
block. Thus, instead of

class A {
 static private const x;
 static private const y;
 static private const z;
 function f() {}
}

one can write:
class A {
 static private {
 const x;
 const y;
 const z;
 }
 function f() {}
}

Two other very useful attributes are true
and false. The attribute true is ignored.
false causes the entire definition or state-
ment to disappear without being evaluated
or processed further. By defining a global
boolean constant (or obtaining one from the
environment) one can achieve convenient
conditional compilation without resorting to
a separate preprocessor language. In the ex-
ample below, instances of class A have the
slot count and method g only if the
const definition of debug is changed to
true:

const debug = false;

class A {
 var x;
 debug var count;

 function f() {}
 debug function g() {}
}

9 Conclusion
This paper presents only the highlights and
some of the rationale of JavaScript 2.0.

JavaScript 2.0: Evolving a Language for Evolving Systems 15

There are a few other features, such as units,
typed arrays, and operator overriding that
were not covered here. See [7] for a much
more detailed description.

It’s been a long road to get to this point,
with various proposals being discussed in
the ECMA TC39 working group for several
years. Most of what made the problem so
difficult and time-consuming is the difficult
task of retaining backward compatibility.
JavaScript 1.5 has grown many ad-hoc fea-
tures that don’t carry forward well and tend
to make any future evolution even more ad-

hoc and especially complicated. Trying to
avoid complexity while retaining compati-
bility has been a constant struggle.

Netscape’s implementations [8] of
JavaScript 1.5 and the forthcoming 2.0 are
available as open source under the NPL,
GPL, or LGPL license. The JavaScript
source code is compact and stand-alone and
does not depend on the rest of the browser to
be compiled; it’s been embedded in
hundreds if not thousands of different
environments to date.

Bibliography
[1] Martin Abadi, Luca Cardelli. A Theory of Objects. Springer-Verlag 1996.

[2] ECMA web site, http://www.ecma.ch/

[3] ECMA-262 Edition 1 standard,
http://www.mozilla.org/js/language/E262.pdf

[4] ECMA-262 Edition 2 standard,
http://www.mozilla.org/js/language/E262-2.pdf

[5] ECMA-262 Edition 3 standard,
http://www.mozilla.org/js/language/E262-3.pdf

[6] David Flanagan. JavaScript: The Definitive Guide, 4th Edition. O’Reilly 2002.

[7] Mozilla’s JavaScript 2.0 web site,
http://www.mozilla.org/js/language/js20/

[8] Mozilla’s JavaScript web site, http://www.mozilla.org/js/

[9] Netscape. Object Hierarchy and Inheritance in JavaScript. Thunder Lizard Productions
JavaScript Conference ’98, also available at
http://developer.netscape.com/docs/manuals/communicator/jsobj
/index.htm

[10] SmallScript LLC. SmallScript Website, http://www.smallscript.net/

[11] W3C Document Object Model, http://www.w3.org/DOM/

